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A mixture of two different species of positively charged bosons in harmonic traps
is considered in the mean-field approximation. It is shown that depending on the
ratio of parameters, the two components may coexist in same regions of space, in
spite of the Coulomb repulsion between the two species. Application of this result
is discussed for the generalization of the Bose–Einstein condensation mechanism
for low-energy nuclear reaction (LENR) and transmutation processes in condensed
matters. For the case of deutron–lithium (d + Li) LENR, the result indicates that
(d + 6Li) reactions may dominate over (d + d) reactions in LENR experiments.

1. Introduction

In order to understand and explain the anomalous nuclear low-energy reaction
phenomena,1 Bose–Einstein condensation (BEC) of integer-spin nuclei was sug-
gested as a possible mechanism for ultra low-energy nuclear reaction in 1998.2

Recently, theoretical studies of BEC mechanism have been carried out by approx-
imately solving a many-body Schrödinger equation for a system of N identical
charged integer-spin nuclei (“Bose” nuclei) confined in ion traps.3–7 The solution
is used to obtain theoretical formulae for estimating the probabilities and rates of
nuclear fusion for N identical Bose nuclei confined in an ion trap or an atomic clus-
ter. In this paper, we generalize our previous one specie BEC mechanism to the
two-species case in order to apply our formulation to the LENR and transmutation
processes in condensed matters.8,9

2. One Specie Case

For the BEC mechanism, the total nuclear d–d fusion rate R(1) per unit volume per
unit time is given by3–7

R(1) = nB

√
3
4π
ΩBα

(
!c

m

)
NnB, (1)

where B is given by B = 3Am/8πα!c, nB is a trap/cluster number density (num-
ber of traps/clusters per unit volume) as defined as, nB = NB/N,NB is the total
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number of Bose nuclei in traps/clusters per unit volume, and N is the average num-
ber of Bose nuclei in a trap/cluster. nB is an average number of Bose nuclei per
trap/cluster, nB = N/〈r〉3, where 〈r〉 is the average size of traps/atomic clusters. A
is given by A = 2SrB/π!, where rB = !2/2µe2, µ = m/2, S is the S-factor for the
nuclear fusion reaction between two deutrons (for D(d,p)T and D(d,n)3He reactions,
S ≈ 55 keV-barn), and Ω is the probability of the BEC ground-state occupation.

In terms of S-factor, Eq. (1) can be rewritten as

R(1) = nBΩK

(
S

µ

)
NnB, (2)

where

K =
3
√

3
8π2

√
4π

1
αc

.

We note a very important fact that R(1) does not depend on the Gamov factor in
contrast to the conventional theory for nuclei fusion in free space. This is consistent
with conjecture noted by Dirac10 that each interacting neutral boson behaves as an
independent particle in a common average background for the large N case. Fur-
thermore, the reaction rate R(1) is proportional to Ω which is expected to increase
as the operating temperature decreases. The only unknown parameter in Eqs. (1)
and (2) is the probability of the BEC ground state occupation, Ω.

Our predictions imply that nuclear fusion may be achievable at lower tempera-
tures.

3. Two Species Case

We consider a mixture of two different species of positive charged bosons, labeled
1 and 2 with N1 and N2 particles, respectively. We denote charges and masses as
Z1 ≥ 0, Z2 ≥ 0 and m1, m2, respectively. We assume that trapping potentials Vi

are isotropic and harmonic

Vi(#r) = miω
2
i
r2

2
.

The mean-field energy functional for the two-component system is given by gener-
alization of the one-component case5

E =
2∑

i=1

Ei + Eint, (3)

where

Ei =
∫

d#r
!2

2mi
|∇ψi|2,

Eint =
e2

2

∫
d#xd#y

(Z1n1(#x) + Z2n2(#x))(Z1n1(#y) + Z2n2(#y))
|#x − #y| ,
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and ni denotes density of species i, ni = |ψi|2,
∫

d#r ni(#r) = Ni. (4)

In Eq. (3), we have neglected effects of order 1/Ni.
The minimization of the functional, Eq. (3), with subsidiary conditions, Eq. (4),

leads to the following time-independent mean-field equations:

− !2

2mi
∇2ψi(#r) + (Vi + Wi)ψi(#r) = µiψi(#r), (5)

where

Wi(#r) = e2
∫

d#y [Z2
i n2

i (#y) + Z1Z2n1(#y)n2(#y)]/(|#r − #y|ni(#y)), (6)

and µi are the chemical potentials, which are related to the ground-state energy,
Eq. (3), by the general thermodynamics identity

µi =
∂E

∂Ni
.

We note that the mean-field theory, Eq. (5), cannot describe the Wigner-
crystallization regime.11

In the Thomas–Fermi (TF) approximation, in which one neglects the kinetic
energy terms in Eq. (5), Eq. (5) reduce to

µi = Vi + Wi. (7)

Equation (7) holds in the region where ni are positive and ni = 0 outside this
region. We can obtain from these equations that

µ2 − Z2

Z1
µ1 =

(
m2ω2

2
m1ω2

1
− Z2

Z1

)
m1ω2

1
2

r2,

and hence we have proved that Eq. (7) has non-trivial solution if and only if

λ =
m2ω2

2Z1

m1ω2
1Z2

= 1. (8)

In this case, we have µ2 = (Z2/Z1)µ1.
Equation (7) can be solved analytically to obtain

ni(#r) =
3Ni

4πR3
i

θ(R2
i − r2), (9)

where θ denotes the unit positive step function,

Ri =
√

!
miωi

[γ(i)
c (Z2

i N2
i + Z1Z2N1N2)/Ni]1/3, (10)

and

γ(i)
c = α

√
mic2

!ωi
.
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This is done by seeing that potentials Wi, Eq. (6) are solutions of the Poisson
equations

∇2W1(#r) = −4πe2[Z2
1n1(#r) + Z1Z2n2(#r)],

∇2W2(#r) = −4πe2[Z2
2n2(#r) + Z1Z2n1(#r)].

Straightforward calculations with ni from Eq. (9) yield

µi =
3
2
miω

2
i R2

i ,

and

E =
9
10

!ω1

Z2
1

[γ(1)
c ]2/3[(Z2

1N1 + Z1Z2N2)]5/3.

Comparing the radii of clouds R1 and R2, Eq. (10), we see that R1 = R2. Therefore,
we have found that depending of the ratio λ, Eq. (8), the two components coexist
in the same region of space, in spite of the Coulomb repulsion between the two
species. This result is obtained in the TF approximation, Eq. (7). If λ = 1, and
Ni ( 1, γ(i)

c Nj ( 1, the TF approximation provides an accurate description of the
exact mean-field solution (except a narrow region near a surface).

For a general value of λ, the mixture becomes unstable against deviations from
uniformity. Although the TF approximation is not applicable for this case, we
expect that if λ ≈ 1 and Ni ( 1, γ(i)

c Nj ( 1, the two components may coexist in
the same regions of space.

4. Fusion Rates

For the two species case, we generalize the one-specie Fermi pseudo-potential3 as

Im V F
ij (#r) = −Aij!δ(#r)

2
,

where the nuclear reaction rate constants Aij are given by

Aij =
2Sijr

(ij)
B

π!

with r(ij)
B = !2/2µijZiZje2 and µij = mimj/(mi + mj). Sij are the S-factors for

nuclear fusion between two nuclei from species i and j.
The nucleus–nucleus fusion rates are determined from the trapped ground state

wave function Ψ as

R11 = −2
!

N1∑

i<j

〈Ψ|Im V F
11(#xi − #xj)|Ψ〉/〈Ψ|Ψ〉,

R12 = −2
!

N1∑

i=1

N2∑

j=1

〈Ψ|Im V F
12(#xi − #yj)|Ψ〉/〈Ψ|Ψ〉,
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R22 = −2
!

N2∑

i<j

〈Ψ|Im V F
22(#yi − #yj)|Ψ〉/〈Ψ|Ψ〉,

and in the mean-field approximation, Eq. (9), we have

R11 = A11N1n
B
1 /2, R12 = A12N1n

B
2 , R22 = A22N2n

B
2 /2,

where

nB
i = Ni/(4/3)πR3

i .

If the probabilities of the mean-field ground state occupation,3 Ωi are taken into
account, the trap fusion rates are given by

Rt
11 = Ω1R11, Rt

22 = Ω2R22, Rt
12 = Ω3R12.

We expect that Ω3 ≈
√
Ω1Ω2.

5. Selection Rules

For the BEC mechanism for LENR and transmutation processes, there are two
selection rules: (A) nuclear spin selection rule and (B) nuclear mass-charge selection
rule.
(A) Nuclear spin selection rule:

Nuclear spins of both species must be integer. This rule is obvious for the BEC
mechanism.
(B) Nuclear mass–charge selection rule:

If we assume ω1 = ω2, we have from Eq. (8), λ = m2Z1/m1Z2 = 1 or

Z1

Z2
=

m1

m2
≈ Z1 + Ñ1

Z2 + Ñ2
, (11)

where Ñi is the number of neutrons in the Bose nucleus for the specie i. We note
that Eq. (11) is satisfied, for example, for two species with Zi = Ñi.

6. Application to (D + Li) Reactions

For (d + 6Li) reaction, 6Li(d,α)4He (Q = 22.37 MeV) and for (d + 7Li) reaction,
7Li(d,n)2 4He (Q = 15.12 MeV), the S-factors are 18.8 MeV-barn12,13 and 30 MeV-
barn,14 respectively. Using these values we find that the corresponding nuclear re-
action rate constants are Ad6Li ≈ 5.8 × 10−15cm3/s and Ad7Li ≈ 8.97 × 10−15cm3/s
which are about 50 times larger than the d–d nuclear reaction rate constant
Add ≈ 1.5 × 10−16cm3/s.

We expect that nuclear reaction rate constants for reactions 6Li(6Li,5Li)7Li
(Q = 1.86 MeV) and 6Li(6Li,α)2 4He (Q = 20.897 MeV) are much smaller than
Ad6Li.

For the BEC mechanism, the (d + 7Li) reaction rate is expected to be suppressed
compared with the (d + 6Li) reaction rate. This is consistent with the observation
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of depletion of 6Li15,16 as inferred from increased 7Li/6Li abundance ratio in Arata–
Zhang’s particulate Pd exposed to deuterium gas.17–20

The excess heat and 4He observed in electrolysis experiments17–20 may be due
to 6Li(d,α)4He in addition to other reactions leading to the final states without
4He. This would be an alternative scenario to the (d + d) reaction scenario which
has been proposed by many.

7. Summary and Conclusions

A generalization of the BEC mechanism for one specie LENR processes in con-
densed matters has been made to the case of a mixture of two different species of
positively charged Bose nuclei in harmonic traps. Depending on the ratio of the pa-
rameters involved, it is shown that the two components may coexist in same regions
of space, in spite of the Coulomb repulsion between two species. We have obtained
an approximate selection rule involving nuclear masses and charges of two species.

For a mixture d and Li species, we expect that the (d + 6Li) reaction rate may
be larger than the (d + d) reaction rate, implying that the (d + 6Li) reactions may
dominate over the (d + d) reactions in LENR experiments in condensed matters.
This is consistent with the recent observation of the 6Li depletion15,16 in particulate
Pd exposed to deuterium gas.17–20 Further LENR experiments involving 6Li or 7Li
separately are needed for more conclusive tests of the BEC mechanism with two
species.
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