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Equivalent linear two-body method for Bose-Einstein condensates
in time-dependent harmonic traps
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The recently developed time-independent effective linear two-body method@J. Phys. B: At., Mol. Opt. Phys.
33, 55 ~2000!# has been generalized for time-dependent traps. The method is used to describe the dynamics of
trapped Bose-Einstein condensates beyond the Thomas-Fermi regime. The calculated aspect ratios after bal-
listic expansion are found to be in good agreement with experimental data obtained recently by Go¨rlitz et al.
@Phys. Rev. Lett.87, 130402~2001!#.
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I. INTRODUCTION

The newly created Bose-Einstein condensates~BEC! of
weakly interacting alkali-metal atoms@1# stimulated a num-
ber of theoretical investigations~see recent review@2#!. Ac-
cording to the Hohenberg theorem@3#, the BEC is impossible
in ~one-dimensional! 1D and 2D homogeneous Bose gas
But BEC can occur in inhomogeneous systems, for exam
in atomic traps@4#. The theoretical aspects of the BEC
highly elongated shaped traps~quasi-one-dimensional re
gime! have been reported in many papers@5–13#. The Gross-
Pitaevskii~GP! equation@14# is widely used to describe th
experimental results for BEC. In Ref.@5# it was found that
the GP predictions for nonlinear dynamics~the aspect ratio
after ballistic expansion! are in good agreement with thos
observed in a recent experiment@15#. We note that,a priori,
it was not obvious that the GP equation gives the corr
description of the nonlinear dynamics of the quasi-1D BE

Recently, an alternative method of equivalent linear tw
body ~ELTB! equations for many-body systems has been
veloped based on the variational principle@16–19#. It was
shown that the ELTB method gives a good result for
ground state of Bose-condensed atoms in harmonic tr
The purpose of this work is to generalize the ELTB meth
@16–19# for the dynamics of trapped Bose-condensed ga
A recently developed approximation@5# provides the possi-
bility of avoiding extensive numerical integration of th
time-dependent ELTB equation. As an example of its ap
cation, this approximation is used to describe the ballis
expansion of the BEC after the cigar-shaped trap is switc
off. The calculated aspect ratios are found to be in go
agreement with the GP calculations and with the recent
perimental results@15#.

In Sec. II we derive the ELTB method for the time
independent trap. The accuracy of the ELTB method is c
firmed by numerical computations. Section III considers
large-N limit. In Sec. IV, we developed an analytical formu
for the lower bounds to the ELTB ground-state energy. S
tion V develops the analytical approximation for the tim
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dependent ELTB equation. We conclude the paper in Sec
with a brief summary.

II. TIME-INDEPENDENT TRAP

For the stationaryN-body system, our method for obtain
ing the ELTB equation consists of following two steps.

The first step is to give theN-body wave function
c(r1 ,r2 ,...) aparticular functional form,

c~r1 ,r2 ,...!'c̃~z1 ,z2 ,z3!, ~1!

wherez1 , z2 , andz3 are known functions. We limitz’s to
three variables in order to obtain the ELTB equation, sinc
relative motion in the two-body problem depends on o
vector described by three component variables. We note
approximation~1! allows us to study systems that are n
spherically symmetric. The second step is to derive an eq
tion for c̃(z1 ,z2 ,z3) by requiring thatc̃ must satisfy a varia-
tional principle

d^c̃uHuc̃&50 ~2!

with a subsidiary condition̂c̃uc̃&51. H is the Hamiltonian.
This leads to a linear two-body equation from which bo
eigenvalues and eigenfunctions can be obtained.

To fix collective coordinatesz1 , z2 , andz3 , we note that
the hyper radius

r25(
i

N

~xi
21yi

21zi
2! ~3!

for an isotropic case@16# and also collective variables

x25(
i

N

xi
2, y25(

i

N

yi
2, z25(

i

N

zi
2, ~4!

for an anisotropic case@17–19#, yield good results for the
dilute BEC of atoms in harmonic traps for both positive a
negative scattering length. This success motivates us to
troduce more general collective variables:
©2002 The American Physical Society02-1
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xp15(
i

N

xi
p1, yp25(

i

N

yi
p2, zq5(

i

N

zi
q , ~5!

where optimal values ofp1 , p2 , and q, restricted to even
numbers, are to be chosen to minimize the energy.

We considerN identical bosonic atoms confined in a ha
monic trap with the following Hamiltonian:

H52
\2

2m (
i 51

N

D i1
m

2 (
i 51

N

@v'
2 ~xi

21yi
2!1vz

2zi
2#

1(
i , j

Vint~rW i2rW j !. ~6!

We use the Fermi pseudopotential approximation forVint ,

Vint~rW i2rW j !5
4p\2a

m
d~rW12rW j !, ~7!

wherea is the scattering length. For the eigenfunctionc of
H, we assume the following form:

c~r1 ,...,rN!'c̃~r ,z!, ~8!

where r p5( i 51
N (xi

p1yi
p) and zq5( i 51

N zi
q . The ELTB

method leads to the equation forc̃,

FH01N122/pa'r 21N122/qazz
21N2/p11/q11

g

r 2zG c̃5Ec̃,

~9!

where

H05
\2

2m'N122/p S ]2

]r 2 1
2N21

r

]

]r D2
\2

2mzN
122/q

3S ]2

]z2 1
N21

z

]

]zD , ~10!

m'5
mG~1/p!~2/p!222/pg̃~2N/p,222/p,0!

2G~221/p!
,

mz5
mG~1/q!~1/q!222/qg̃~N/q,222/q,0!

2G~221/q!
, ~11!

a'5
mG~3/p!v'

2

G~1/p!~2/p!2/pg̃~2N/p,2/p,0!
,

az5
mG~3/q!vz

2

2G~1/q!~1/q!2/qg̃~N/q,2/q,0!
, ~12!

and

g5
p\2a~N21!g̃~2N/p,0,22/p!g̃~N/q,0,21/q!

4m~1/p!222/p~1/q!121/qG2~1/p!G~1/q!21/q

~13!

with
05360
g̃~z,a,b!5zb2a
G~z1a!

G~z1b!
. ~14!

Equation ~9! simplifies if we introduce the new function
u(r ,z),

c̃~r ,z!5
u~r ,z!

r ~2N21!/2z~N21!/2 . ~15!

In terms ofu(r ,z) Eq. ~9! reads

F2
\2

2m'N122/p

]2

]r 22
\2

2mzN
122/q

]2

]z2 1Veff~r ,z!G
3u~r ,z!5Eu~r ,z!. ~16!

The effective potentialVeff(r,z) is given by formula

Veff~r ,z!5
\2~2N21!~2N23!

8m'N122/pr 2 1
\2~N21!~N23!

8mzN
122/qz2

1a'N122/pr 21azN
122/qz21g

N2/p11/q

r 2z
.

~17!

To study the validity of the ELTB method, we consider a
example of the ground-state of87Rb atoms in a harmonic
trap, as investigated in Ref.@20# with theS-wave triplet-spin
scattering lengtha5100aB , whereaB is the Bohr radius, the
axial frequencyvz/2p5220 Hz, and asymmetry paramet
l5vz /v'5A8. The calculated energies per particleE/N
are compared with those obtained from the solutions of
GP equation@20# and with the variational Monte Carlo
~VMC! calculations@21# in Fig. 1. These comparisons sho
that the optimal choice of the parametersp and q greatly
improves the results withp5q52 @17–19#. For 100<N
<20 000, the difference between our results and those of

FIG. 1. Ground-state energy per particles,E/N, of 87Rb atoms
in a trap withl5A8, in units of\v' , as a function of the numbe
of particles in the trap. Solid circles, diamonds, dashed line,
solid line represent the results of theoretical calculations using
ELTB method, thep52, q52 approximation, the variationa
Monte-Carlo method@21#, and the GP equation@20#, respectively.
2-2
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solution of the GP equation@20# are about 2%, and the dif
ference between our results and the calculations@21# are less
than 1%.

Reference@22# proves that the GP mean-field theory d
scribes correctly the energy and particle density of a dil
3D Bose gas in a trap to the leading order in the small
rameterr̄a3 ~wherer̄ is the mean density anda is the scat-
tering length! whenN is large buta is small with fixedNa.

We note also that for the case of lower dimensionsd
,3, it is known that the quantum-mechanical two-bo
t-matrix vanishes@23# at low energies. Therefore the replac
ment of the two-body interaction by thet matrix, as done in
deriving the GP mean-field theory, is not correct in gene
for the d,3 case@24#.

The ELTB can be applied tod,3 cases. To illustrate this
let us consider the McGuire-Yang~MY ! 1D N-body problem
@25# with the Hamiltonian

H52
1

2 (
i 51

N
d2

dxi
2 1c(

i , j
d~xi2xj !. ~18!

For the case ofc,0, there is one bound state for a system
N bosons with the wave function

c~x!5expF c

2 (
i , j

uxi2xj uG ~19!

and the energy of this state is given by

E52c2
N~N221!

24
. ~20!

The MY N-body problem provides a unique possibility
checking the validity of various approximations made for t
Schrödinger equation describingN one-dimensional particle
interacting via short-range potentials. For this case we s
the ELTB wave function in the form ofc(x1 ,x2 ,...,xN)
'c̃(r), whererp5( i 51

N uxi up. Using Eq.~2! we obtain in
the leading order ofN→`,

E52c2
N3

2312/pG~1/p!G~221/p!
. ~21!

Choosing an optimal value ofp, which minimizes the energy
leads to

E

c2N3 520.041 217 2. ~22!

On the other hand, for largeN, we have from Eq.~20!

E

c2N3 52
1

24
520.041 666 7. ~23!

The relative error for the binding energy between Eqs.~22!
and~23! is about 1%. Therefore, we have demonstrated
the ELTB method is a very good approximation for the M
N-body problem for largeN.
05360
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l
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In Ref. @19#, it was shown that in the case of largeN the
ground-state wave function ofN bosons confined in a har
monic anisotropic trap can be written in a separable form

C~rW1 ,rW2 ,...,rWN!5h~x,y,z!x~V!, ~24!

wherex25( i
Nxi

2, y25( i
N yi

2, z25( i
N zi

2, andV is a set of
(3N23) angular variables.

Equation~24! may explain why the ELTB results are ex
pected to be valid and are so close to the GP results for
dilute systems (r̄a3!1). However Eq.~24! is valid also for
nondilute systems, while the GP mean-field theory is prov
to be applicable for dilute systems. Therefore, we may
pect that the ELTB approach will not be quantitative
equivalent to the solution of the GP equation for these ca
In our future work, we hope also to investigate the large g
parameter regimes@26#.

Here we note that if scattering lengtha is larger than the
van der Waals lengthr 0 @27#, there is a regime when th
Bose system is dilute, but with respect tor 0 , r̄r 0

3!1 @28#.
For these systems the three-body contributions, given by
Efimov effect @29#, can become the dominant term of th
energy functional@28#.

III. LARGE- N LIMIT

To consider the large-N limit, we rescale variablesr andz
in Eq. ~15!,

r 5N1/pr̃ , z5N1/qz̃, ~25!

and rewrite Eq.~16! as

2
\2

2m'N2

]2

] r̃ 22
\2

2mzN
2

]2

] z̃2 1Veff~ r̃ ,z̃!)u~ r̃ ,z̃!

5
E

N
u~ r̃ ,z̃!. ~26!

In the large-N limit, g̃ in Eqs. ~11!–~13! is of the order of
unity and the expression forVeff(r̃,z̃) simplifies to

Veff~ r̃ ,z̃!5
\2

2mm'8 r̃ 2 1
\2

8mmz8z̃
2 1mv'

2 a'8 r̃ 21mvz
2az8z̃

2

1
\2aN

m

g8

r̃ 2z̃
, ~27!

where

m'8 5
G~1/p!~2/p!222/p

2G~221/p!
, mz85

G~1/q!~1/q!222/q

G~221/q!
,

~28!

and

a'8 5
G~3/p!

G~1/p!~2/p!2/p , az85
G~3/q!

2G~1/q!~1/q!2/q , ~29!
2-3
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g85
pp222/pq121/q

4G~1/p!2G~1/q!21/q . ~30!

Quantum fluctuations are unimportant in the limitN
→`, and the most significant contribution to the groun
state energy is given by

E5NVeff~r 0 ,z0!, ~31!

wherer 0 andz0 are to be obtained from

]Veff~r 0 ,z0!

]r 0
5

]Veff~r 0 ,z0!

]z0
50. ~32!

Obviously Eq.~31! fails if the effective potential does no
possess a minimum.

Instead of variablesr̃ and z̃, we introduce the new quan
tities

r t5 r̃ /a' , zt5 z̃/a' , ~33!

wherea'5A\/(mv').
On making the substitution~33!, Eqs. ~27! and ~30! be-

come

Veff~r t ,zt!5\v'F 1

2m18r t
2 1

1

8mz8zt
2 1a'8 r t

21l2az8zt
2

1N~a/a'!
g8

r t
2zt

G , ~34!

with

a'8 r t
22~a/a'!N

g8

r t
2zt

5
1

2m'r t
2 ,

2l2az8zt
22~a/a'!N

g8

r t
2zt

5
1

4mz8zt
2 , ~35!

andl5vz /v' .
In the case of largeN(a/a'), solutions of Eqs.~35!

r t5@N~a/a'!g8A2l2az8/a'8
3#1/5,

zt5FN~a/a'!g8S a'8
3

2l2az8
D 2G1/5 1

a'8
~36!

give for the ground-state energy

E

N\v'~Nla/a'!2/55
5

24/5~a'8
2g82az8!1/5. ~37!

Optimal values ofp54 andq54 minimize the energy, Eq
~37!, and we have

E

N\v'~Nla/a'!2/551.081 99. ~38!

For the case of largeN, one can obtain an essentially exa
expression for the ground-state energy by neglecting
05360
-

t
e

kinetic-energy term in the Ginzburg-Pitaevskii-Gross eq
tion ~the Thomas-Fermi approximation! @30,31# as

E

N\v'~Nla/a'!2/55
5

7F S 15

8 D 2

2G1/5

51.055 06. ~39!

Comparing Eq.~38! with Eq. ~39!, we can see that for the
case of largeN the ELTB method (p54,q54) is a very
good approximation, with a relative error of about 2.5% f
the binding energy~note that thep52, q52 case gives
about 8.2% error for the binding energy!.

IV. LOWER BOUNDS

In this section we formulate a lower-bound method for t
solution of the ELTB equation~9!. Following Ref. @5#, we
introduce auxiliary Hamiltonians

H'52
\2

2m'N122/p S ]2

]r 2 1
2N21

r

]

]r D1N122/pa'r 2,

Hz52
\2

2mzN
122/q S ]2

]z2 1
N21

z

]

]zD1N122/qazz
2,

~40!

and

H̃'5\NA2a'g' /m'1N122/pa'~12g'!r 2,

H̃z5
\N

2
A2azgz /mz1N122/qaz~12gz!z

2, ~41!

whereg' andgz are parameters, restricted by 0<g',1 and
0<gz,1, respectively. Using these auxiliary Hamiltonia
we write the ELTB energy functional as

E5^c̃u~H'1Hz2H̃'2H̃z!uc̃&

1^c̃uS H̃'1H̃z1N2/p11/q11
g

r 2zD uc̃&. ~42!

Omission of (H'1Hz2H̃'2H̃z) yields a lower bound for
the ground-state energy. Projectinguc̃& on the complete basis
statesun&, obtained from

hun&5enun&,

where

h5H01N122/pa'g'r 21N122/qazgzz
2,

we get

^c̃uhi uc̃&5(
n

enu^c̃un&^nuc̃&u>e1

5N\~A2a'g' /m'1 1
2 A2azgz /mz!. ~43!

Therefore a set of optimal values of parametersg' andgz ,
which maximizes our lower bound, will yield an optima
lower-bound value for the ground-state energy given by
2-4
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E

N
5 max

g' ,gz

F\~A2a'g' /m'1 1
2 A2azgz /mz!

1
5

24/5@g2a'
2 ~12g'!2az~12gz!#

1/5G . ~44!

Using this approximation we calculate the energy per p
ticle, E/N, for the same case as in Fig. 1. The calcula
results are compared with those obtained from the nume
solutions of the ELTB equation in Table I. These compa
sons show that the analytical approximation, Eq.~44!, gives
excellent results. The difference betweenE/N, Eq. ~44! and
numerical solutions of the ELTB equation is less than 0.0
for 100<N<5000 and less than 0.006% forN.5000.

V. TIME-DEPENDENT TRAP

In this section, we considerN identical bosonic atoms
confined in a time-dependent harmonic trap with the Ham
tonian

H~ t !52
\2

2m (
i 51

N

D i1
m

2 (
i 51

N

@v'
2 ~ t !~xi

21yi
2!1vz

2~ t !zi
2#

1
4p\2a

m (
i , j

d~rW i2rW j !.

To obtain the wave function, we apply the variation
principle

dA50, ~45!

where the action integralA is given by

A5E
t0

t1
^C̃uF i\

]

]t
2H~ t !G uC̃&dt, ~46!

andC̃(r ,z,t) is the trial wave function.
This generalizes the time-independent ELTB equat

@16–19# for time-dependent traps and leads to the equat

TABLE I. Calculated results for the lower boundElow /N, Eq.
~36!, and for the ground-state energy per particle,E/N, ELTB Eq.
~9!, in units of\v' , for the same case as in Fig 1.D is defined as
D5(E2Elow)/E.

N Elow /N E/N D

100 2.660 93 2.662 86 7.231024

200 2.866 33 2.867 97 5.731024

500 3.342 59 3.343 78 3.631024

1000 3.913 11 3.913 92 2.131024

2000 4.696 83 4.697 42 1.331024

5000 6.255 03 6.255 39 5.831025

10000 7.940 76 7.941 01 3.131025

15000 9.172 08 9.172 27 2.131025

20000 10.187 7 10.187 9 2.031025
05360
r-
d
al
-

l-

l

n
n

i\
]C̃

]t
5FH01N122/pa'~ t !r 21N122/qaz~ t !z2

1N2/p11/q11
g

r 2zGC̃, ~47!

where

a'~ t !5
mG~3/p!v'

2 ~ t !

G~1/p!~2/p!2/pg̃~2N/p,2/p,0!
,

az~ t !5
mG~3/q!vz

2~ t !

2G~1/q!~1/q!2/qg̃~N/q,2/q,0!
, ~48!

with the initial conditionC̃(r ,z,0)5c̃(r ,z), wherec̃(r ,z) is
a ground-state solution of the time-independent ELTB eq
tion ~9! with a'(0)5a' , az(0)5az .

We substitute the following Eq.~49! into Eq. ~47!
@5,32,33#:

C̃~r ,z,t !5
F~r /l'~ t !,z/lz~ t !,t !

l'
N~ t !lz

N/2~ t !

3exp@2 ib~ t !1 i ~ f'~ t !r 21 f z~ t !z2!#,

~49!

where

f'~ t !52
l̇'~ t !m'N122/p

2\l'~ t !
, f z~ t !52

l̇z~ t !mzN
122/q

2\lz~ t !
,

~50!

andb, l' , andlz are solutions of the following equations

\ḃ5
E

l'
2 lz

1\NA2a'~0!g' /m'S 1

l'
2 2

1

l'
2 lz

D
1

\N

2
A2az~0!gz /mzS 1

lz
22

1

l'
2 lz

D , b~0!50,

~51!

m'

2
l̈'52a'~ t !l'1

a'~0!g'

l'
3 1

a'~0!~12g'!

l'
3 lz

,

mz

2
l̈z52az~ t !lz1

az~0!gz

lz
3 1

az~0!~12gz!

l'
2 lz

2 ,

l'~0!51, l̇'~0!50, lz~0!51, l̇z~0!50. ~52!

The above substitution yields the following time-depend
ELTB equation:

i\
]F

]t
5FH'2H̃'

l'
2 1

Hz2H̃z

lz
2 1

1

l'
2 lz

S H̃'1H̃z

1N2/p11/q11
g
2 2ED GF. ~53!
r z

2-5
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By neglecting (H'2H̃') and (Hz2H̃z) in Eq. ~53!, we
obtain a generalization of the approximation of Ref.@5# to
the time-dependent ELTB equation

C̃~r ,z,t !5
c̃„r /l'~ t !,z/lz~ t !…

l'
N~ t !lz

N/2~ t !

3exp@2 ib~ t !1 i „f'~ t !r 21 f z~ t !z2
…#, ~54!

where all the dynamics is in the evolution of the scali
parametersl'(t) andlz(t), Eq. ~52!.

The aspect ratio of the cloud in the approximation, E
~54! is given by

R~ t !5Ax1
2~ t !

z1
2~ t !

5
l'~ t !

lz~ t !
R~0!. ~55!

As an example, we consider the application of the ab
results to the experimental data with23Na atoms obtained in
the Ioffe-Pritchard-type magnetic trap with radial and ax
trapping frequencies ofv' /(2p)5360 Hz andvz /(2p)
53.5 Hz @15#, respectively. In our analysis, we usea
52.75 nm, t54 ms, anda/a'52.48831023, where a'

5A\/mv'. As in Ref. @5#, we consider a sudden and tot
opening of the trap att50. For this case, Eqs.~52! become

d2l'

dt2 5b'S g'

l'
3 1

12g'

l'
3 lz

D ,

d2lz

dt2 5bzS gz

lz
2 1

12gz

l'lz
D e2, ~56!

wheret5v'(0)t ande5vz(0)/v'(0)!1, and

b'5
p2G~3/p!G~221/p!

G2~1/p!g̃~2N/p,2/p,0!g̃~2N/p,222/p,0!
,

bz5
q2G~3/q!G~221/q!

G2~1/q!g̃~N/q,2/q,0!g̃~N/q,222/q,0!
. ~57!

To zeroth order ine2, we havelz51 andl'5A11b't2.
For the experimental conditions@15#, the terms ine2 are
negligible. Our calculated results forR(t) are compared with
those obtained from the solution of the GP equation@5#, with
the Thomas-Fermi~TF! approximation, and with experimen
tal data @15# in Fig. 2. This comparison shows that th
present results, Eqs.~56!, are in good agreement with the G
calculations and with the recent experimental results@15#.
es
ico
n
l;

te

05360
.

e

l

We consider 1D approximation, when the radial motion
the atoms becomes frozen and is governed by the grou
state wave function of the radial harmonic oscillator@6,8#.
From Fig. 2 one can see that the 1D approximation provi
reasonable results with a relative error of less than 10%
the case ofN<104.

One can also see that even for the relatively large
parameter,Na/aho'100, aho5Ah/(mv'

2/3vz
1/3), the TF ap-

proximation is not valid, the error is larger than 20%.

VI. SUMMARY AND CONCLUSION

In summary, we have generalized the time-independ
ELTB method@16–19# to the time-dependent case. As e
amples of application, we have studied the problem of
ballistic expansion of the condensate after the cigar-sha
traps are switched off. The approximation developed in R
@5# provides a possibility of avoiding extensive numeric
integrations of the time-dependent ELTB equation.

The calculated aspect ratios after ballistic expansion
found to be in a good agreement with experimental d
obtained recently by a group at MIT.
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FIG. 2. Aspect ratioR of the 23Na atom cloud after a ballistic
expansion oft54 ms, as a function of the number of atomsN, with
v'(0)52p3360 Hz,vz(0)52p33.5 Hz. Experimental data~d!
from Ref. @15# are compared with the results of theoretical calcu
tions using Eqs.~48! ~ !, the GP equations~L!, 1D approxima-
tion ~ !, and the TF approximation~ • • • !.
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