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Abstract

Dynamics of strongly interacting trapped dilute Fermi gases is investigated at zero temperature. As an example of ap
we consider the expansion of the cloud of fermions initially confined in an anisotropic harmonic trap, and study the equ
state dependence of the radii of the trapped cloud and the collective oscillations in the vicinity of a Feshbach resonan
 2004 Elsevier B.V. All rights reserved.
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The newly created ultracold trapped Fermi ga
with tunable atomic scattering length[1–10] in the
vicinity of a Feshbach resonance offer the possi
ity to study highly correlated many-body system
including the cross-over from the Bardeen–Coop
Schrieffer (BCS) phase to the Bose–Einstein cond
sate (BEC) of molecules[1,11–15].

In this Letter we report our investigation of the d
namics of the strongly interacting dilute Fermi gas (
lute in the sense that the range of interatomic poten
is small compared with inter-particle spacing) at z
temperature. As an example of application we c
sider the expansion of the cloud of6Li atoms initially
confined in an anisotropic harmonic trap, study
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equation of state dependence of the radii of the trapped
cloud and the collective oscillations near a broad F
hbach resonance at a magnetic fieldB = 820± 3 G
[16–18].

We consider a Fermi gas comprising a 50–
mixture of two different states confined in a harmo
trap Vext(�r) = (m/2)(ω2⊥(x2 + y2) + ω2

zz
2). The s-

wave scattering length between the two fermio
species is negative,a < 0.

Our starting point is the single equation approa
to the time-dependent density-functional theory[19].
The basic of this strategy is to construct the followi
equation

(1)ih̄
∂Ψ

∂t
= − h̄2

2m
∇2Ψ + VextΨ + VxcΨ

that yields the samen(�r, t) = |Ψ (�r, t)|2 as the original
many-fermions system. The dynamics of the sys
is controlled by an effective single-particle potent
.
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Vxc(�r, t). The central problem is the approximation f
the xc potential. This is in general a nonlocal fun
tional of the density that depends on the history of
system (on the behavior of the density at timest ′ < t).

The simplest approximation is to ignore nonlocal
in space and retardation in time. This leads to the
adiabatic local density approximation

(2)Vxc(�r, t) =
[
∂nε(n)

∂n

]
n=n(�r,t)

,

whereε is the ground state energy per particle of
homogeneous system andn is the density. The right
hand side ofEq. (2)is the local density approximatio
for the ground-state xc potential, but it evaluated
the time-dependent density. Notice that in the ab
equationn is the total density of the gas given by t
sum of the two spin component.

The adiabatic local density approximation is
remarkably good approximation if the energy gap
much larger than the oscillator energiesh̄ωz, h̄ω⊥
[20,21]. It is expected that this condition is satisfied f
small temperature[20,21]. Here we notice Refs.[22–
24] who argue that the ground state of the mixture
two species of fermions with different densities (ma
contains both a superfluid and a normal Fermi liqu
We do not consider this asymmetrical mixture in t
Letter.

The ground state energy per particle,ε(n), in the
low-density regime,kF|a| � 1, can be calculate
using an expansion in power ofkF|a|

(3)

ε(n) = 2EF

(
3

10
− 1

3π
kF|a| + 0.055661

(
kF|a|)2

− 0.00914
(
kF|a|)3

− 0.018604
(
kF|a|)4 + · · ·

)
,

whereEF = h̄2k2
F

2m
andkF = (3π2n)1/3. The expansion

(3) is valid for 3D. For the case of dimensionsd < 3,
it is known that the quantum-mechanical two-bodyt-
matrix vanishes at low energies[25]. The first term in
Eq. (3) is the Fermi kinetic energy, the second te
corresponds to the mean-field prediction[26], the next
two terms were first considered in Refs.[27,28] and
Ref. [29], respectively.

In the a → −∞ limit (the Bertsch many-body
problem, quoted in Ref.[30]) ε(n) is proportional to
that of the noninteracting Fermi gas
(4)ε(n) = (1+ β)
3

10

h̄2k2
F

m
,

where a universal parameterβ [9] is negative and
|β| < 1 [30–32].

We also consider the following approximations f
ε(n):

(5)

ε(n) = EF

(
3

5
− (2/(3π))kF|a|

1+ (6/(35π))(11− 2 ln2)kF|a|
)

,

and

(6)ε(n) = EF

(
3

5
− 2

δ1kF|a| + δ2(kF|a|)2

1+ δ3kF|a| + δ4(kF|a|)2

)
,

whereδ1 = 0.106103,δ2 = 0.187515,δ3 = 2.29188,
δ4 = 1.11616.

While Eq. (5) [31] reproduces first three term
of expansion(3) in low-density regime and approx
mately valid in unitary limit,β = −0.67,Eq. (6)repro-
duces first four terms of expansion(3) in low-density
regime and in unitary limit,kFa → −∞, reproduces
exactly results of the recent Monte Carlo calculatio
[32], β = −0.56.

It can be proved[33] that every solution of the
equation

(7)ih̄
∂Ψ

∂t
= − h̄2

2m
∇2Ψ + VextΨ + ∂(nε(n))

∂n
Ψ,

is a stationary point of an action corresponding to
Lagrangian density

L0 = ih̄

2

(
Ψ

∂Ψ ∗

∂t
− Ψ ∗ ∂Ψ

∂t

)

(8)+ h̄2

2m
|∇Ψ |2 + ε(n)n + Vextn,

which forΨ = eiφ(�r,t)n1/2(�r, t) can be rewritten as

L0 = h̄φ̇n + h̄2

2m
(∇√

n)2 + h̄2

2m
n(∇φ)2

(9)+ ε(n)n + Vextn.

The only difference from equations holding for boso
[33,34]is given by density dependence ofε(n). We do
not consider three-body recombinations, since th
processes play an important role near p-wave t
body Feshbach resonance[35].

Let us first discuss the expansion of the fermio
superfluid in thea → −∞ limit, Eq. (4). In the hydro-
dynamic approximation (neglecting quantum press
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Fig. 1. Aspect ratio of the cloud of theN = 7.5 × 104 6Li atoms as a function of time after release from the trap (ω⊥ = 2π × 6605 Hz,
ωz = 2π × 230 Hz). The circular dots indicate experimental data from the Duke University group[9]. The solid line and the dashed lin
represent theoretical calculations in the unitary limit (a → −∞) including the quantum pressure term and in the hydrodynamic approximatio
respectively.
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se
term, h̄2

2m
(∇√

n)2, in Eq. (9)) the corresponding Euler
Lagrange equation admit the simple scaling soluti
n(�r, t) = n0(xi/bi(t)) [20]. We note here that the hy
drodynamic behavior of a cold Fermi gas[9] is not in
general direct experimental evidence for superfluid
[36–38].

We take into account the quantum pressure
finding the optimal ground state energy[39]

(10)

E0

N
= max

γx,γy,γz

[
3∑

i=1

h̄ωi

2
√

γi + 34/3

4
(1+ β)1/2N1/3

×
3∏

(
√

1− γiωi)
1/3

]
.

i=1
In this case the scaling parameters obey the follow
equations

(11)b̈i − ω2
i γi

b3
i

= ω2
i (1− γi)

bi

∏3
i=1 b

2/3
i

,

at t = 0, bi(0) = 1 andḃi(0) = 0.
The predictions ofEqs. (11) for aspect ratio,

ωz

√
1− γzb⊥/(ω⊥

√
1− γ⊥bz(t)), are reported in

Fig. 1 show that the effect of inclusion of the qua
tum pressure term on the expansion of superflui
about 1%. For the reminder of this Letter we will u
the hydrodynamic approximation.
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Fig. 2. Radial compressional frequency in unit ofω⊥ as a function of the dimensional parameter(N1/6a/aho)

−1. In the unitary limit,
a → −∞ (•), one expectω/ω⊥ = √

10/3 ≈ 1.826. The solid line and the dashed line representthe results of theoretical calculations usi
equations of stateEqs. (6) and (5), respectively.
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Now we consider a general time-dependent h
monic trap,Vext(�r, t) = (m/2)

∑3
i=1 ω2

i (t)x
2
i , and a

generalε(n). A suitable trial function can be take
asφ(�r, t) = χ(t) + (m/(2h̄)

∑3
i=1 ηi(t)x

2
i , n(�r, t) =

n0(xi/bi(t))/
∏

j bj . With this ansatz, the Hamilto

principle, δ
∫

dt
∫
L0 d3r = 0, gives the following

equations for the scaling parametersbi

b̈i + ω2
i (t)bi

(12)

− ω2
i

bi

∫ [n2 dε(n)/dn]n=n0(�r)/∏
j bj

d3r∫ [n2 dε(n)/dn]n=n0(�r) d3r

∏
j

bj = 0,
wherebi(0) = 1, ḃi(0) = 0 andωi = ωi(0) fix the
initial configuration of the system, corresponding
the densityn0(�r).

The release energy which corresponds to an i
gral of motion ofEq. (12)is expressed by

(13)

Erel = 1

N

[
1

2

ḃ2
i

ω2
i

∫
n2

0(�r)
dε(n0)

dn0
d3r

+
∫

n0ε

(
n0

/∏
j

bj

)
d3r

]
,
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Fig. 3. Axial cloud size of strongly interacting6Li atoms after normalization to anon-interacting Fermi gas withN = 4 × 105 atoms as a
function of the magnetic fieldB. The trap parameters areω⊥ = 2π × 640 Hz,ωz = 2π(600B/kG + 32)1/2 Hz. The solid line, dashed line an
circular dots represent the results of theoretical calculations using equations of stateEq. (6), Eq. (5)and experimental data from the Innsbru
group[10], respectively.
y

and for the case ofε(n) ∝ nγ

Erel = 2µ

5γ + 2

[
γ

2

ḃ2
i

ω2
i

+ 1∏
j b

γ

j

]
,

whereµ is the chemical potential.
ExpandingEqs. (12)around equilibrium (bi = 1)

we get in the case of anisotropic trapping (ωx = ωy =
ω⊥, ωz/ω⊥ = λ) the following result for the frequenc
of the radial compression mode

ωrad = ω⊥√
2

[
4+ 2κ + 3λ2 + κλ2
(14)

+
√(

4+ 2κ + 3λ2 + κλ2
)2 − 4(10+ 6κ)λ2

]1/2
,

where κ = ∫
n3

0 d2ε/(dn2
0) d3r/

∫
n2

0 dε/(dn0) d3r.
For an elongated trap,λ � 1, we can rewriteEq. (14)
as

(15)ωrad≈ ω⊥
√

4+ 2κ.

Note thatEq. (14) for the case ofε(n) ∝ nγ was
considered in several papers[40].

In Fig. 2 we present the calculations ofωrad
using two approximations,Eqs. (5) and (6), for the
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equation of stateε(n) (to calculate the ground-sta
density we have used a highly accurate variatio
approach of Ref.[41]). The curves explicitly show
the nonmonotonic behavior ofωrad in the agreemen
with a schematic interpolation of Ref.[42]. It can
be seen fromFig. 2 that the difference between tw
approximations,Eqs. (5) and (6), is less than 0.7%.

Our calculated results for the axial cloud size
strongly interacting6Li atoms as a function of th
magnetic field strengthB are compared with the rece
experimental data[10] in Fig. 3. This comparison
shows that although both approximations,Eqs. (5) and
(6), give a reasonable agreement with experime
data, the equation of state fromEq. (6) leads to the
better description of the experimental curve. We h
used the data from Ref.[17] to converta to B.

We note here that in general a Feshbach reson
may lead to the density dependence of the effec
interaction (for bosons cases see, for example,[43,
44]).

In conclusion, we have considered the expans
of the cloud of initially confined6Li atoms and
studied the equation of state dependence of the
of trapped cloud and collective oscillations near
broad Feshbach resonance atB = 820 ± 3 G. It
is shown a nonmonotonic behavior of the rad
compression mode frequency and demonstrated
an important test of the equation of state can
obtained from the study of the radii of trapped clo
in regimes now available experimentally.

Note added

A recent paper by the Duke University group[45]
reports on measurements of the radial compres
mode frequencies. Our calculations in a very go
agreement with these experimental data on the B
side.

While this work was being prepared for public
tion, two preprints[46,47]appeared in which the au
thors consider collective modes and the expans
of a trapped superfluid Fermi gas in the BCS-B
crossover. For the negative scattering length case,
results are in perfect agreement with ours.
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