Physics 241 - Exam \#2

This exam consists of 13 problems on 9 pages. Please check that you have them all. Each problem is worth 12 points unless otherwise noted.

All of the formulas that you will need are given below. You may also use a calculator.

$$
\begin{aligned}
& \sin \theta=y / r \quad \cos \theta=x / r \quad \tan \theta=y / x \\
& \text { X } \\
& e=1.6 \times 10^{-19} \mathrm{C} \quad k=9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \quad \epsilon_{0}=8.9 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{N} \cdot \mathrm{~m}^{2}\right) \\
& F=\frac{k q_{1} q_{2}}{r^{2}}=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} r^{2}} \quad E=\frac{k q}{r^{2}} \quad \Phi=\int \vec{E} \cdot \vec{d} A=\frac{q}{\epsilon_{0}} \quad \text { charged plane : } E=\frac{\sigma}{2 \epsilon_{0}} \\
& \Delta V=\frac{\Delta U_{E}}{q}=-\int \vec{E} \cdot \overrightarrow{d l} \quad d V=-\vec{E} \cdot \overrightarrow{d l} \quad \text { point charge }: V=\frac{k q}{r} \quad U_{E}=q_{0} V=\frac{k q q_{0}}{r} \\
& E_{x}=-\frac{\partial V}{\partial x} \quad 1 \text { Volt }=1 \mathrm{~J} / \mathrm{C} \quad 1 \text { Volt } / \mathrm{m}=1 \mathrm{~N} / \mathrm{C} \quad U_{E}=\frac{1}{2} q V \quad C=\frac{q}{V} \\
& \text { Surface area(sphere) }=4 \pi R^{2} \quad \text { capacitor : } U_{E}=\frac{1}{2} \frac{q^{2}}{C}=\frac{1}{2} q V=\frac{1}{2} C V^{2} \quad u_{E}=\frac{1}{2} \epsilon_{0} E^{2}
\end{aligned}
$$

parallel plate capacitor : $C=\frac{\epsilon_{0} A}{d} \quad$ isolated spherical capacitor : $C=4 \pi \epsilon_{0} R$
capacitors in parallel : $C=C_{1}+C_{2}+C_{3} \ldots \quad$ capacitors in series : $\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} \ldots$

$$
C=\kappa C_{0} \quad I=\frac{\Delta q}{\Delta t} \quad R=\frac{V}{I} \quad R=\rho \frac{L}{A} \quad V=I R
$$

$$
\begin{aligned}
& P=I V=I^{2} R=\frac{V^{2}}{R} \quad P=\mathcal{E} I \quad \text { resistors in series : } R=R_{1}+R_{2}+R_{3} \ldots \\
& \text { resistors in parallel : } \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \ldots \quad q(t)=q_{0} e^{-t /(R C)}=q_{0} e^{-t / \tau} \\
& I(t)=\frac{V}{R} e^{-t /(R C)}=I_{0} e^{-t / \tau} \quad \tau=R C \\
& q(t)=C \mathcal{E}\left(1-e^{-t /(R C)}\right)=q_{0}\left(1-e^{-t / \tau}\right) \quad I(t)=\frac{\mathcal{E}}{R} e^{-t /(R C)}=I_{0} e^{-t / \tau} \\
& \overrightarrow{F_{B}}=q \vec{v} \times \vec{B} \quad \overrightarrow{F_{B}}=I \vec{L} \times \vec{B} \quad \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{q \vec{v} \times \hat{r}}{r^{2}} \quad \Phi_{B}=B A \cos \theta \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \quad d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{\ell} \times \hat{r}}{r^{2}} \quad \int \vec{B} \cdot d \vec{\ell}=\mu_{0} I \quad B(\text { center of circular loop })=\frac{\mu_{0} I}{2 R} \\
& B(\text { wire })=\mu_{0} I /(2 \pi r) \quad B(\text { solenoid })=\mu_{0} n I \quad \mathcal{E}=-\frac{d \Phi_{B}}{d t} \quad U_{L}=\frac{1}{2} L I^{2} \\
& V_{L}=-L \frac{d I}{d t} \quad L=\mu_{0} n^{2} A \ell \quad U_{B}=\frac{1}{2 \mu_{0}} B^{2}(V o l) \quad u_{B}=\frac{1}{2 \mu_{0}} B^{2} \\
& I=\frac{V}{R}\left(1-e^{(-t / \tau)}\right) \quad\left|V_{L}\right|=V e^{(-t / \tau)} \quad \tau=L / R \\
& \omega=2 \pi f \quad X_{C}=\frac{1}{\omega C} \quad X_{L}=\omega L \quad \omega_{\text {resonance }}=\frac{1}{\sqrt{L C}} \\
& I_{r m s}=\frac{1}{\sqrt{2}} I_{p e a k} \quad I_{r m s}=\frac{V_{r m s}}{R} \quad I_{r m s}=\frac{V_{r m s}}{X_{C}} \quad I_{r m s}=\frac{V_{r m s}}{X_{L}} \quad P_{\text {ave }}=I_{r m s}^{2} R \\
& I_{\text {peak }}=\frac{V_{\text {peak }}}{R} \quad I_{\text {peak }}=\frac{V_{\text {peak }}}{X_{C}} \quad I_{\text {peak }}=\frac{V_{\text {peak }}}{X_{L}}
\end{aligned}
$$

1. An electron has a velocity along the $-z$ direction, in a region where the magnetic field is along $-y$. What is the direction of the magnetic force on the electron?
(a) The force is zero
(b) The force is along the $+x$ direction
(c) The force is along the $-x$ direction
(d) The force is along the $+y$ direction
(e) The force is along the $-y$ direction
2. A very long straight wire carries a current $I(t o p)=8.5 \mathrm{~A}$ to the right as shown below. A parallel wire (also very long and straight) carries a current I (bottom) $=3.5 \mathrm{~A}$ to the left. The wires are separated by a distance $D=0.55 \mathrm{~m}$. What is the magnitude of the magnetic force on a 2.5 m long section of the top wire?
(a) 270 N
(b) $3.1 \times 10^{-7} \mathrm{~N}$
(c) $1.7 \times 10^{-4} \mathrm{~N}$
(d) $2.7 \times 10^{-5} \mathrm{~N}$
(e) $1.1 \times 10^{-5} \mathrm{~N}$

3. Four wires, each of length $L=2.5 \mathrm{~m}$, are connected to form a square metal loop as shown. Each wire has a resistance $R=750 \Omega$. A magnetic field of magnitude B is directed perpendicular to the plane of the loop, and into the plane of the drawing. This field varies with time as $B=0.65-1.5 t$ where the field is measured in tesla and time in seconds. What is the magnitude of the force on one of the straight sections of the loop at $t=0$?
(a) 6.1 N
(b) 0.85 N
(c) 15 N
(d) 2.1 N
(e) 0.0051 N

4. Four very long straight wires are directed perpendicular to the plane of the drawing below. The points where these wires cross the plane of the drawing form a square of edge length $L=40 \mathrm{~cm}$. Each wire carries a current of magnitude 2.5 A . Find the magnetic field (direction and magnitude) at the center of the square.

(a) $7.0 \times 10^{-6} \mathrm{~T}$ directed towards the bottom of the figure.
(b) $2.5 \times 10^{-6} \mathrm{~T}$ directed towards the lower left of the figure.
(c) $1.7 \times 10^{-6} \mathrm{~T}$ directed towards the lower left of the figure.
(d) zero
(e) $3.5 \times 10^{-6} \mathrm{~T}$ directed towards the lower left of the figure.
5. Consider the circuit shown below with $V=9.0 \mathrm{~V}, R_{1}=3000 \Omega, R_{2}=7000 \Omega$, and $L=7.7 \mathrm{mH}$. This switch is closed for a very long time. What is the energy stored in the inductor?
(a) zero
(b) $6.9 \times 10^{-8} \mathrm{~J}$
(c) $1.2 \times 10^{-5} \mathrm{~J}$
(d) $3.0 \times 10^{-3} \mathrm{~J}$
(e) $3.5 \times 10^{-8} \mathrm{~J}$

6. Two infinite uniformly charged planes are separated by a distance L. The plane on the left has a charge per unit area of $+2 \sigma$, and is at $V=0$. The plane on the right has a charge per unit area $-\sigma$. What is the potential of the plane on the right?
(a) $-3 \sigma L /\left(2 \epsilon_{0}\right)$
(b) $\sigma L /\left(2 \epsilon_{0}\right)$
(c) $+3 \sigma L /\left(2 \epsilon_{0}\right)$
(d) $-\sigma L /\left(2 \epsilon_{0}\right)$
(e) $-\sigma L / \epsilon_{0}$

7. A loop of wire lies in the $x-y$ plane. This loop has a current I that circulates counterclockwise as viewed from above (along $+z$). What is the direction of the magnetic field at point A on the x axis?
(a) $+y$
(b) $-y$
(c) $+z$
(d) $-z$
(e) $+x$

8. A proton (charge $=+e=+1.6 \times 10^{-19} \mathrm{C}$) travels in the $x-y$ plane as shown below with a speed of $250 \mathrm{~m} / \mathrm{s}$. There is a magnetic field of magnitude 2.5 T along the $+x$ direction. What is the direction and magnitude of the magnetic force on the proton? Note that the $+z$ direction is out of the plane of the drawing, toward you.
(a) $1.0 \times 10^{-16} \mathrm{~N}$ along the $+z$ direction
(b) $1.0 \times 10^{-16} \mathrm{~N}$ along the $-z$ direction
(c) zero
(d) $7.1 \times 10^{-17} \mathrm{~N}$ along the $+z$ direction
(e) $7.1 \times 10^{-17} \mathrm{~N}$ along the $-z$ direction

9. The axis of a current loop is parallel to the z axis, and the loop is centered at the origin. A very long straight wire runs parallel to the x axis and lies in the $x-y$ plane as shown. The current in the wire is in the $+x$ direction, and is decreasing with time. What is the direction of the induced current in the loop?
(a) counterclockwise as viewed from above
(b) clockwise as viewed from above
(c) zero - there is no induced current
(d) oscillates between clockwise and counterclockwise
(e) not enough information to tell

10. An $L-C$ circuit contains a single inductor in parallel with a single capacitor. The inductor has an inductance of 0.55 mH and the circuit has a resonant frequency of 250 kHz . What is the capacitance of the capacitor?
(a) $2.9 \times 10^{-8} \mathrm{~F}$
(b) $1.7 \times 10^{-4} \mathrm{~F}$
(c) $7.4 \times 10^{-10} \mathrm{~F}$
(d) $1.5 \times 10^{-9} \mathrm{~F}$
(e) $5.5 \times 10^{-8} \mathrm{~F}$
11. Consider the AC circuit shown below. The AC voltage has an amplitude of $V_{0}=1.5 \mathrm{~V}$; i.e., $V=V_{0} \sin (2 \pi f t)$ where f is very very high. If the amplitude of the current in the circuit is 5.7 mA , what is the resistance R of the resistor?
(a) 860Ω

(b) $3.8 \times 10^{-3} \Omega$
(c) 260Ω
(d) 170Ω
(e) 3600Ω
12. Consider the $L C$ circuit shown below with $L=2.5 \mathrm{mH}$ and $C=7.5 \times 10^{-9} \mathrm{~F}$. At $t=0$ the current is 45 mA while the charge on the capacitor is zero. A short time later the current is zero; what is the charge on the capacitor at that moment?
(a) $1.9 \times 10^{-7} \mathrm{C}$
(b) $8.4 \times 10^{-10} \mathrm{C}$
(c) $4.5 \times 10^{-2} \mathrm{C}$
(d) $7.3 \times 10^{-6} \mathrm{C}$
(e) zero

Note: Problem 13 is worth 6 points.
13. Which fundamental law of electromagnetism explains how a generator produces an AC electric potential difference?
(a) Ampere's law
(b) Coulomb's law
(c) Faraday's law
(d) Gauss' law
(e) Biot-Savart law

The End

