## Physics 241 - Exam \#1

February 21
2006

This exam consists of 13 problems on 9 pages. Please check that you have them all. Each problem is worth 12 points except \#13 which is worth 6 points. The maximum score possible is 150 .

All of the formulas that you will need are given below. You may also use a calculator.

$$
\sin \theta=y / r \quad \cos \theta=x / r \quad \tan \theta=y / x
$$

$e=1.6 \times 10^{-19} \mathrm{C}$

$$
k=9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}
$$

$$
\epsilon_{0}=8.9 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{N} \cdot \mathrm{~m}^{2}\right)
$$

$$
F=\frac{k q_{1} q_{2}}{r^{2}}=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} r^{2}} \quad E=\frac{k q}{r^{2}} \quad \Phi=\int \vec{E} \cdot \vec{d} A=\frac{q}{\epsilon_{0}} \quad \text { charged plane }: E=\frac{\sigma}{2 \epsilon_{0}}
$$

$$
\Delta V=\frac{\Delta U_{E}}{q}=-\int \vec{E} \cdot \overrightarrow{d l} \quad d V=-\vec{E} \cdot \overrightarrow{d l} \quad \text { point charge }: V=\frac{k q}{r} \quad U_{E}=q_{0} V=\frac{k q q_{0}}{r}
$$

$$
E_{x}=-\frac{\partial V}{\partial x} \quad 1 \text { Volt }=1 \mathrm{~J} / \mathrm{C} \quad 1 \text { Volt } / \mathrm{m}=1 \mathrm{~N} / \mathrm{C} \quad U_{E}=\frac{1}{2} q V \quad C=\frac{q}{V}
$$

Surface area(sphere) $=4 \pi R^{2} \quad$ capacitor : $U_{E}=\frac{1}{2} \frac{q^{2}}{C}=\frac{1}{2} q V=\frac{1}{2} C V^{2} \quad u_{E}=\frac{1}{2} \epsilon_{0} E^{2}$
parallel plate capacitor : $C=\frac{\epsilon_{0} A}{d} \quad$ isolated spherical capacitor : $C=4 \pi \epsilon_{0} R$
capacitors in parallel : $C=C_{1}+C_{2}+C_{3} \ldots \quad$ capacitors in series : $\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} \ldots$

$$
\begin{gathered}
C=n C_{0} \quad I=\frac{\Delta q}{\Delta t} \quad R=\frac{V}{I} \quad R=\frac{L}{A} \quad V=I R \\
P=I V=I^{2} R=\frac{V^{2}}{R} \quad P=\mathcal{E} I \quad \text { resistors in series }: R=R_{1}+R_{2}+R_{3} \ldots \\
\text { resistors in parallel }: \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \ldots \quad q(l)=q_{0} e^{-t /(R C)}=q_{0} e^{-t / \tau} \\
I(t)=\frac{V}{R} e^{-t /(R C)}=I_{0} e^{-t / \tau} \quad \tau=R C \\
q(t)=C \mathcal{E}\left(1-e^{-t /(R C)}\right)=q_{0}\left(1-e^{-t / \tau}\right) \quad I(t)=\frac{\mathcal{E}}{R} e^{-t /(R C)}=I_{0} e^{-t / \tau}
\end{gathered}
$$

1. Six electrons are placed on a met. il splices. If the potential of the sphere is -35 V , what is the radius of the sphere?

2. Two thin insulating shells have radii $R_{1}=0.50 \mathrm{~m}$ and $R_{2}=1.5 \mathrm{~m}$. Both shells are charged uniformly: the outer shell has a total charge +3.5 C , while the inner shell carries an unknown amount of charge. If the electric field outside the bigger shell is zero, what is the electric potential difference between the two shells?
To make $E_{\text {outsize }}=0$

$$
Q_{1 N}=-Q
$$

$E_{\text {ins } 0_{E}}=\frac{h Q_{1 m}}{R^{2}}$

(b) $4.2 \times 10^{10} \mathrm{~V}$ with the inner shell at a lower potential $\quad$ (a) $3 \times 10^{10} \mathrm{~V}$ with the inner shell at a lower potential
(c) $8.4 \times 10^{10} \mathrm{~V}$ with the inner shell at a lower potential
(d) $3.2 \times 10^{10} \mathrm{~V}$ with the inner shell at a lower potential
(e) $6.3 \times 10^{10} \mathrm{~V}$ with the inner shell at a higher potential
3. A hollow metal sphere has a total charge of zero. A point charge $Q$ sits inside the hollow region, slightly away from the center of the sphere as shown below. What is the charge induced on the outer surface of the metal sphere?
$\frac{(\mathrm{a})+Q}{\text { (b) }-Q}$
(c) $+Q / 2$
(d) $-2 Q$
(e) zero

4. Two infinite uniformly charged planes are separated by a distance $L$. The plane on the left has a charge per unit area of $-3 \sigma$, and is at $V=0$. The plane on the right has a charge per unit area $+\sigma$. What is the potential of the plane on the right?

For on g plans
$\begin{aligned} E & =\frac{\sigma}{2 \epsilon_{0}} \\ \text { Bethe macc } E_{\text {DIAL }} & =\frac{\sigma}{2 \epsilon_{0}}-\frac{(-36)}{2 \epsilon_{0}} \\ & =\frac{2 \sigma}{\epsilon_{0}}\end{aligned}$
(a) $4 \sigma L / \epsilon_{0}$
(b) $\sigma L^{2} / \epsilon_{0}$
(c) $-2 \sigma L / \epsilon_{0}$

$\frac{\text { (d) } 2 \sigma L / \epsilon_{0}}{\text { (e) } \sigma L /\left(2 \epsilon_{0}\right)}$
5. Three point charges are arranged as shown below. What is the electric find at the origin?
(a) $-0.71 \mathrm{kQ} / L^{2}$ along $x$ $-0.71 \mathrm{kQ} / L^{2}$ along $y$
(b) $+0.29 k Q / L^{2}$ along $x$
$+0.29 k Q / L^{2}$ along $y$
(c) $+0.50 k Q / L^{2}$ along $x$ $+0.50 k Q / L^{2}$ along $y$
(d) $+k Q / L^{2}$ along $x$ $+k Q / L^{2}$ along $y$

(e) $+(0.71) k Q / L^{2}$ along $x$ $+(0.71) k Q / L^{2}$ along $y \quad X i E_{x}=+\frac{k Q}{L^{i}}\left(+1-\frac{1}{\sqrt{2}}\right)=+0.29 \frac{k Q}{L^{2}}$

$$
y: E_{0}=
$$


6. A point charge $Q$ is located as shown on the $x$ axis a distance of 1.5 m from the origin. A second point charge $5 Q$ is located as shown an unknown distance $L$ from the origin. The electric field at the origin is zero. Find $L$.
(a) $L=2.3 \mathrm{~m}$
(b) $L=4.5 \mathrm{~m}$
(c) $L=7.5 \mathrm{~m}$
(d) $L=1.5 \mathrm{~m}$

7. Five electrons are equally spaced around a semicircle of radius $R=0.15 \mathrm{in}$ at shown. What is the electric potential at the origin?
(a) $-3.2 \times 10^{-7} \mathrm{~V}$
(b) $+3.2 \times 10^{-8} \mathrm{~V}$
(c) $-4.8 \times 10^{-8} \mathrm{~V}$
(d) $-9.6 \times 10^{-8} \mathrm{~V}$
(e) zero
8. Consider the circuit shown below, with $R_{1}=1.0 \mathrm{k} \Omega, R_{2}=1.5 \mathrm{k} \Omega, R_{3}=2.5 \mathrm{k} \Omega$, $R_{4}=2.0 \mathrm{k} \Omega, V_{1}=5.5 \mathrm{~V}$ and $V_{2}=3.5 \mathrm{~V}$. What is the current through resistor $R_{4}$ ?

(a) 0.29 mA
(b) 1.0 mA
(c) 0.44 mA
(d) 2.3 mA
(e) 0.51 mA


$$
=\frac{2.0}{3.94 \times 10^{3}}=0.51 \mathrm{~mm}
$$

9. Consider the circuit shown below, with $R_{1}=3.0 \mathrm{k} \Omega, R_{2}=2.0 \mathrm{k} \Omega, C=5.0 \mu \mathrm{~F}$ and a battery voltage is $V_{\text {hat }}=90 \mathrm{~V}$. The switch is initially open for a very long time. The switch is then closed at $t=0$. What is the current through resistor $R_{1}$ the instant after the switch is closed?
at $t=0 \quad g=0 \Rightarrow V_{\text {cap }}=0 \approx$ short

$$
I=\frac{V_{\text {bat }}}{R_{1}}=\frac{9.0}{3.0 \times 10^{3}}=3.0 \mathrm{~mA}
$$

(a) 1.8 mA
(b) $2 e r o$
(c) 7.5 mA
(d) 3.0 mA
(e) 9.0 mA
10. Consider again the circuit in Problem 9 above. After the switch is closed for a very long time, what is the charge on the capacitor?
(a) $1.8 \times 10^{-5} \mathrm{C}$

$$
t=\infty \quad I_{c \eta}=0
$$

(b) $3.7 \times 10^{-5} \mathrm{C}$
(c) zero
(d) $2.7 \times 10^{-5} \mathrm{C}$
(e) $4.5 \times 10^{-5} \mathrm{C}$

$$
\begin{aligned}
& I=\frac{V_{b_{a}}}{R_{1}+R_{2}}=\frac{9.0}{(3.0+2.0) k n}=1.8 \mathrm{~mA} \\
& V_{C_{p}}=I \cdot R_{2}=\left(1.8 \times 10^{-3}\right)\left(2.06_{2} \mathrm{~A}\right)=3.6 \mathrm{~V} \\
& G=C V_{c_{q}}=5 \times 10^{6} \cdot 3.6=1.8 \times 10^{5} \mathrm{C}
\end{aligned}
$$

11. An electron moves a distance of 7.5 m through a region where the electric field $E$ is constant and parallel to the displacement. The electron's potential energy increases by $9.5 \times 10^{-20} \mathrm{~J}$. What is the magnitude of $E$ ?
(a) $0.13 \mathrm{~V} / \mathrm{m}$
(b) $0.079 \mathrm{~V} / \mathrm{m}$
(c) $0.59 \mathrm{~V} / \mathrm{m}$
(d) $0.20 \mathrm{~V} / \mathrm{m}$
(e) $1.2 \times 10^{-20} \mathrm{~V} / \mathrm{m}$
12. Three identical capacitors are connected as shown. If the equivalent capacitance of this combination is $37 \mu \mathrm{~F}$, find $C$.

(a) $37 \mu \mathrm{~F}$
(b) $19 \mu \mathrm{~F}$
(c) $74 \mu \mathrm{~F}$
(d) $12 \mu \mathrm{~F}$
(e) $25 \mu \mathrm{~F}$

$$
\begin{aligned}
& q . E \cdot L=\Delta M \\
& |E|=\left|\frac{\Delta u}{q L}\right|=\frac{9.5 \times 10^{20}}{1.6 \times 11^{-19} \cdot(7.5)}=0.079 \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

Note: Problem 13 is worth 6 points.
13. In class we did a demonstration wilh a capacitor with movable plates and an air gap. We observed how the voltage across the capacitor varied as the plate separation $d$ was changed. Whicl of the following statements best describos this experiment?
(a) Inserting a dielectric between the plates increases the capacitance.
(b) The voltage difference depends on the charge on the capacitor.
(c) The $R C$ time constant does not depend ou the plate spacing.
(d) The voltage decreases as the plate separation is decreased, because the capacitance - Gets bigger as $d$ is made smaller.
(e) Capacitors with movable plates are designed to torment students.

## The End

